論文「テキスト生成AIに関する技術論的考察」の生成AIによる改訂 - 冒頭文章に関する英語文献資料の検索

冒頭の文章およびプロンプト文を、ChatGPT4oに英訳させた結果を少し修正し、下記のような英文を生成AIに与えました。
 
生成AIに与えた英語プロンプト文1-冒頭の文章の英訳に対する英語文での指示

Please provide a analysis on the following text in the view of theory of technology.

The historical development of recent generative AI technologies, such as ChatGPT, has the potential to significantly transform the nature of society and production in the future. This transformation could occur through the “integration” of generative AI with the network systems of real-world entities conceptualized in IoT theory, positioning generative AI as a central mechanism for both “operation” and “control” elements. 

 

生成AIに与えた英語プロンプト文2ー参考文献の提示に関する英語文での指示

Could you please list 10 important online references related to the above, with URLs?
 
その結果は下記の通りです。
 
 
Open AIのChatGPT4oの回答は、下記のように、日本語プロンプト文英語プロンプト文とではかなり異なっています。

こうした差異が生じる要因としては、下記の二つが考えられます。

1) 日本語における「作業」要素機構や「制御」要素機構といった日本語用語が持つ特有のニュアンスが英訳では抜け落ち、「operation」と「control」といった一般的用語のレベルで英訳されていること

英単語のoperationは、日本語的文脈における「作業」という意味以外に、「作用・働き」、「業務」、「営業」、「演算」、「(軍事)作戦」など多様な意味を持っている。また英単語のcontolは、日本語的文脈における「制御」という意味以外に、「支配」、「管理」、「統制」、「鎮圧」など多様な意味を持っている。
 

2) プロンプト文の言語に対応した社会的背景や学術的背景の中で解答を返す設計に、Open AIのChatGPT4oがなっていること

ChatGPT4oが挙げる日本語文献の参照資料は、企業のレポートや政府白書である。技術論分野の学術的研究者による議論がWEB上でほとんど公開されていないこともあり、参照データの中にほとんど入っていない。ChatGPT4oに限らないが、特に指定しない限りは、石谷清幹や中村静治らの「動力=制御」論など日本における技術論固有の議論だけでなく、「動力機」、「作業機」、「制御機構」といった用語を用いる技術論の議論も参照されない。(特に指定した場合には、https://chatgpt.com/share/674b1781-1f88-800f-950b-005c92da4d66に示されているように、石谷清幹や中村静治らの「動力=制御」論などの議論も参照データの中に入っているが、それらの議論は「技術論」ではなく、「技術史」の文脈の中に位置づけられているように思われます。)
これに対して英語圏におけるtheory of technologyの議論は、WEB上でのデータとしてもかなり存在している現状を反映して、技術決定論、アクターネットワーク論などの各種視点からの議論を紹介したものとなっています。
 
英語プロンプト文1に対するChatGPT4oの回答
 
The text can be analyzed through several lenses in the theory of technology, touching on sociotechnical systems, technological determinism, and actor-network theory, among others. Here’s a breakdown:
 
1. Technological Determinism
– The text implies that generative AI (e.g., ChatGPT) has an inherent potential to “significantly transform” society and production. This perspective aligns with technological determinism, which posits that technological innovation drives societal and cultural change in a linear and inevitable manner.
– However, this view may underemphasize the role of human agency, cultural resistance, and the economic, political, or regulatory systems that mediate technological adoption.
 
2. Sociotechnical Systems
– By referring to the “integration” of generative AI with IoT systems, the text underscores the interconnected nature of modern technologies. IoT and generative AI represent components of a larger sociotechnical system where technological, social, and organizational elements interact.
– The suggestion that AI could become central to “operation” and “control” reflects the systemic interdependence where generative AI acts not just as a tool but as a foundational element that influences workflows, decision-making, and autonomy.
 
3. Actor-Network Theory (ANT)
– The reference to AI as a “central mechanism” aligns with ANT, which considers technology (e.g., generative AI) as an actor within a network of human and non-human entities. In this view, AI becomes a participant in shaping outcomes, rather than a passive tool.
– IoT networks provide a fertile context for such an analysis. As sensors, devices, and AI systems collaborate, they form a hybrid network where AI influences the network’s trajectory through its processing, decision-making, and adaptability.
 
4. Autonomy and Control
– The text’s focus on AI as part of the “operation” and “control” mechanisms brings to light concerns about autonomy, governance, and human oversight in technology. This raises questions of:
Who controls the AI? – Are corporations, governments, or individuals the primary beneficiaries?
How much autonomy does AI possess? – What level of decision-making is delegated to AI systems?
– From a critical perspective, this suggests a potential shift in power dynamics where generative AI could centralize control within specific entities (e.g., corporations or governments), altering traditional human roles in decision-making processes.
 
5. Transformative Potential and the Philosophy of Technology
– The statement that generative AI could “transform the nature of society and production” reflects the Heideggerian view of technology as a mode of “revealing” and “enframing.” Generative AI, in this framework, reshapes how we conceptualize production—moving from labor-driven to knowledge- and automation-driven paradigms.
– This transformation might also redefine societal structures. For instance, job markets, education, and creative industries could evolve to accommodate or resist these changes.
 
6. Ethical and Practical Implications
– The text implicitly invites discourse on the ethical ramifications of integrating generative AI into IoT systems. These include:
Privacy concerns: IoT systems generate vast amounts of personal data; integrating generative AI intensifies concerns about data security and surveillance.
Bias and fairness: Generative AI models may perpetuate or amplify biases if not carefully managed.
Dependency and resilience: The centrality of generative AI raises questions about societal dependency on complex, opaque systems, and their resilience to failures or malicious attacks.
 
7. Utopian vs. Dystopian Views
– The phrasing suggests a dual potential. On one hand, generative AI’s integration into IoT could lead to efficiencies, innovation, and enhanced quality of life (utopian vision). On the other hand, it raises concerns about surveillance, loss of privacy, and potential job displacement (dystopian vision). This aligns with critical theories that explore the dual-edged nature of technological progress.
 
Conclusion
The text provides a fertile ground for discussing technology’s role in shaping future societal and productive systems. It situates generative AI within a broader technological ecosystem and implies a significant potential for systemic change. However, the theoretical analysis must also include considerations of human agency, governance, ethics, and power dynamics to comprehensively evaluate this transformation.
 
 
英語プロンプト文2に対するChatGPT4oの回答
 
Here are 10 key online references that explore the integration of generative AI with IoT systems from various theoretical perspectives:
 
  1. On Actor-Network Theory and Algorithms: ChatGPT and the New Power Relationships in the Age of AI
    This research examines how Actor-Network Theory (ANT) can be applied to understand the power dynamics introduced by AI systems like ChatGPT. It discusses the roles of both human and non-human actors in shaping technological outcomes.
    https://link.springer.com/article/10.1007/s43681-023-00314-4
  2.  
  3. A Sociotechnical System Perspective on AI
    This article explores AI systems as sociotechnical constructs, emphasizing the interplay between technical components and social factors. It highlights the unique aspects of AI, such as autonomy and adaptability, within these systems.
    https://link.springer.com/article/10.1007/s11023-024-09680-2
  4.  
  5. A Sociotechnical Perspective for the Future of AI: Narratives and Challenges
    Focusing on the collaboration between sociology and AI, this paper addresses biases and fairness in AI systems, advocating for a sociotechnical approach to future developments.
    https://link.springer.com/article/10.1007/s10676-022-09624-3
  6.  
  7. An Ethical Study of Generative AI from the Actor-Network Theory Perspective
    This study analyzes ChatGPT using ANT to identify security vulnerabilities and ethical considerations, examining the interactions between various actors in AI networks.
    https://arxiv.org/pdf/2406.11860
  8.  
  9. Minding the Gap(s): Public Perceptions of AI and Sociotechnical Imaginaries
    This article delves into public perceptions of AI and the importance of integrating social perspectives into technological development, emphasizing the need for a comprehensive sociotechnical approach.
    https://link.springer.com/article/10.1007/s00146-022-01422-1
  10.  
  11. Socio-Technical Systems: From Design Methods to Systems Engineering
    This paper provides an overview of sociotechnical systems design methods, discussing how human, social, and organizational factors interact with technical elements in system development.
    https://academic.oup.com/iwc/article/23/1/4/693091
  12.  
  13. Sociotechnical Safety Evaluation of Generative AI Systems
    Proposing a structured approach to assess the risks associated with generative AI, this paper emphasizes the importance of considering both social and technical factors in safety evaluations.
    https://arxiv.org/abs/2310.11986
  14.  
  15. Exploring the Digital Transformation of Generative AI-Assisted Foreign Language Education: A Sociotechnical Systems Approach
    This study investigates the integration of generative AI in education through a sociotechnical lens, analyzing the dynamics between technology and human actors in learning environments.
    https://www.mdpi.com/2079-8954/12/11/462
  16.  
  17. Synthetic Sociotechnical Systems: Poiêsis as Meaning Making
    Examining the co-evolution of technology and society, this article discusses how sociotechnical systems are constructed and the implications for meaning-making processes.
    https://link.springer.com/article/10.1007/s13347-024-00778-0
  18.  
  19. Human-Machine Social Systems
    This paper reviews the complex interactions between humans and AI systems, considering them as adaptive social systems and exploring the implications for society and technology co-evolution.
    https://arxiv.org/abs/2402.14410
These references provide a comprehensive overview of the theoretical frameworks and discussions surrounding the integration of generative AI with IoT systems, highlighting the sociotechnical dynamics and ethical considerations involved.
 
カテゴリー: AIに関する技術論的考察, 情報検索, 生成AIの利用法, 論文作成準備, 資料検索 パーマリンク